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To understand what is an elephant...

Deconstruction perspective:
tusks, tail, legs, ears, and
their connections

£

Reductionism, Symbolism

Entity perspective: movement,
behavior, and interactions with
1ts environment

(| B»)

Holism, Connectionism

There is no one best way to formalize
information for problems.
First-principles modeling Data-driven/ML methods
Knowledge, logic-based Pri Experience, heuristic
rior
H _ITIQ knowledge ﬁ Data 1010 D
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Methodology Framework

1. Uncertainty analysis (Where is the gap?)
* Data
* Prior knowledge
* Data-driven model
2. Knowledge-based decomposition (What information/knowledge we can use?)
* Domain know-how
* Scientific Method
* Complexity/Scale
3. Ladder of knowledge-integrated ML (What advantages we can achieve by the integration?)
* Interpolation
» Extrapolation

* Representation
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1. Uncertainty analysis (Where is the gap?)

(1) Uncertainty due to the available General uncertainty
data/measurement/collection Performance gap between actual and predicted values.
A
r A\
Gab comes from: Epistemic Aleatoric
p ' limitation because of biased or the natural inherent
1. First-principles simulation and lack of understanding. noise.
measurements; ] A
2. ML and measurements Parametric Structural
3. Measurements from dit"ferent sources Limitations under the current Whether model specification is
) ' model specification. sufficient.
(Implicit factors, information (Decomposition patterns explained
Ke Y idea: hidden in the data) by knowledge)
—— ——
They are complementary!
Data-driven ML methods First-principles modeling

knowledge-integrated
machine learning
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1. Uncertainty analysis

(2) Uncertainty due to physics (domain knowledge), first-principles model, symbolism

Gaps Description Case Reference
Model over- Unable to capture synergistic or non- Structure engineering in (Stochino 2016)
simplification linear effect from hidden factors extreme condition

Symbol-based rules derived from a strict  Transitioning from

logical deduction process limit the ability experimental modeling or

to accommodate exceptional conditions simulation in lab environments
and 1mplicit interactions to real-world projects

(Tang et al. 2019,
Durdyev et al.
2021)

Context constraints
in model
development

The reliance on informative priors does Energy system optimization
not guarantee inferential perfection or modeling regardless of
even consistency in problem-solving spatiotemporal boundaries

(DeCarolis et al.
2017)

Confirmation bias in
modelling

-> Integration of implicit patterns learned from data
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1. Uncertainty analysis

(3) Uncertainty due to the learning models (ML), data-driven model, connectionism

Gaps Description Case

Approximation error Whether the ML model organization (e.g., the design of CNN/RNN/Tree

Model architecture the model structure, depth of model) approximates a whether a model 1s designed to
(how is it organized?)  solution to accurately describe complex system behavior capture the autocorrelation

Optimization error
Learning rules
(how does it learn?)

Choice of learning rules cause difficulty in finding or

. : : Over-/underfitting issues
result in convergence to a suboptimal solution S

Generalization error ~ Whether training error minimization to approaching the
Objective functions defined indicator leads to a more accurate prediction for the

(what does it learn?) solution

Mean squared error / cross-
entropy

-> Integration of explicit prior domain knowledge
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2. Knowledge-based decomposition (What knowledge we can use?)

Building
Energy demand
forecastmg
(@} Domain knowledge < } Mathematical @ Complexity / Scale
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3. The Ladder of knowledge-integrated machine learning

Transfer information into machine-learnable information to achieve better

* Level 3 Representation
Typical methods: knowledge discovery, representation learning

* Level 2 - Extrapolation
Typical methods: transfer domain knowledge into modeling process

* Level 1 - Interpolation
Typical methods: data argumentation; feature engineering
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3. The Ladder of knowledge-integrated machine learning
Level 1 - Interpolation: data argumentation

@ == Domain P Incorporate prior
Data ~  knowledge %, understanding into data:
reinforce/ %, .
specialize % better generalization; more
T generate | efficient training; reduce

Synthetic  First-principles overfitting; and compensate for

| 1010 | Data simulations sparse data
within observed range

Data-driven
approaches
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3. The Ladder of knowledge-integrated machine learning

Level 1 - Interpolation: data argumentation

Decomposition of additive time-series

First-principles model: i
® 24
e
D o
oW &
o 7 |
Q =
E -
¥
2 5]
2 %] Linear patterns obtained by
5 domain knowledge
T g i (e.g., physics or thermal
T . . 3 - equations)
Machine learning model: T
Flexible -0 ¥ -
— E ¥ Nonlinear pattern from
( [ E o unknown factors
| = g (e.g., environmental
1 ' T T T T T T

, noise)
Time

*  Chen, X, Guo, T., Kriegel, M., & Geyer, P. (2022). A hybrid-model forecasting framework for reducing the building energy performance gap.
Advanced Engineering Informatics, 52, 101627.
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3. The Ladder of knowledge-integrated machine learning
Level 2 - Extrapolation: Physical-informed

=

Data

1010
1010
[—

Data-driven
approaches

a

reinforce/ Domain
specialize knowledge

—
E g Model / §
O- organization =
8
o
@ Objective / &
£ function
First-
{0} Learning / principles
rules simulations

Incorporate prior understanding
into model:

better generalization,
regularization; more efficient
training; contextual understanding,
informed predictions;

outside the observed range
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3. The Ladder of knowledge-integrated machine learning
Level 2 - Extrapolation: Physical-informed
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ML model: Monolithic structure ML model: component-based structure

*  Chen, X, Singh, M.M., & Geyer, P. (2022). Utilizing domain knowledge. robust machine learning for building energy performance prediction
with small, inconsistent datasets. arXiv preprint arXiv:2302.10784.

*  Chen, X, Singh, M.M. & Geyer, P. (2021). Component-based machine learning for predicting representative time-series of energy
performance in building design. In 28th International Workshop on Intelligent Computing in Engineering, EG-ICE 2021. Berlin, Germany.
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3. The Ladder of knowledge-integrated machine learning
Level 3 - Representation: Knowledge discovery

Q

@ Inductive knowledge Incorporate knowledge discovery

Data mechanism into model:
"« ww reinforce ‘f reducing prior knowledge biases;
Emer.gence =% Domain encoding, representing, and transforming
domain rules  knowledge effective information concisely and self-
lm reinforce/ continuously, reasoning
———>  specialize from domain data

[~ e |

Data-driven

approaches First-principles

simulations
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3. The Ladder of knowledge-integrated machine learning
Level 3 - Representation: Knowledge discovery

Selected KllQWIGdg? encoding Target Target Causal structure Extracted causal To COrreCtly estimate
] fe:mu'es by simulation or real- dataset dataset finding algorithm structure (knowledge) th e dlr ect caus al effe ct

world collection
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* Chen, X., Abualdenien, J., Singh, M. M., Borrmann, A., & Geyer, P. (2022). Introducing causal inference in the energy-efficient building design
process. Energy and Buildings, 277, 112583. https://doi.org/10.1016/j.enbuild.2022.112583
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Key takeaways

@ 5 |

e A systematic review of performance gaps and uncertainties in problem formalization in the field of engineering.

e Knowledge decomposition paves the path toward knowledge-integrated machine learning - a three-level ladder
of integration paradigms.

e Reconciling first-principles simulation and data-driven methods contributes to effective engineering solutions.

'
Thanlf you. Nachhaltige
Questions? Gebiudesysteme

Wechat Personal page



	幻灯片编号 1
	幻灯片编号 2
	幻灯片编号 3
	幻灯片编号 4
	幻灯片编号 5
	幻灯片编号 6
	幻灯片编号 7
	幻灯片编号 8
	幻灯片编号 9
	幻灯片编号 10
	幻灯片编号 11
	幻灯片编号 12
	幻灯片编号 13
	幻灯片编号 14
	幻灯片编号 15

