

Pathway toward prior knowledge-integrated machine learning in engineering

Xia Chen and Philipp Geyer

Leibniz University Hannover, Institute for Design and Construction, Sustainable Building Systems Group, Hannover, Germany

xia.chen@iek.uni-hannover.de

To understand what is an elephant...

Deconstruction perspective: tusks, tail, legs, ears, and their connections

Reductionism, Symbolism

Entity perspective: movement, behavior, and interactions with its environment

Holism, Connectionism

There is no one best way to formalize information for problems.

First-principles modeling Knowledge, logic-based

Prior Data

Data-driven/ML methods

Experience, heuristic

Methodology Framework

- 1. Uncertainty analysis (Where is the gap?)
 - Data
 - Prior knowledge
 - Data-driven model
- 2. Knowledge-based decomposition (What information/knowledge we can use?)
 - Domain know-how
 - Scientific Method
 - Complexity/Scale
- 3. Ladder of knowledge-integrated ML (What advantages we can achieve by the integration?)
 - Interpolation
 - Extrapolation
 - Representation

1. Uncertainty analysis (Where is the gap?)

(1) Uncertainty due to the available data/measurement/collection

Gap comes from:

- 1. First-principles simulation and measurements;
- 2. ML and measurements,
- 3. Measurements from different sources.

Key idea:

They are complementary!

General uncertainty

Performance gap between actual and predicted values.

Epistemic

limitation because of biased or lack of understanding.

Parametric

Limitations under the current model specification. (Implicit factors, information hidden in the data)

Data-driven ML methods

Aleatoric

the natural inherent noise.

Structural

Whether model specification is sufficient.

(Decomposition patterns explained by knowledge)

First-principles modeling

knowledge-integrated machine learning

1. Uncertainty analysis

(2) Uncertainty due to physics (domain knowledge), first-principles model, symbolism

Gaps	Description	Case	Reference	
Model over- simplification	Unable to capture synergistic or non- linear effect from hidden factors	Structure engineering in extreme condition	(Stochino 2016)	
Context constraints in model development	Symbol-based rules derived from a strict logical deduction process limit the ability to accommodate exceptional conditions and implicit interactions	Transitioning from experimental modeling or simulation in lab environments to real-world projects	(Tang et al. 2019, Durdyev et al. 2021)	
Confirmation bias in modelling	The reliance on informative priors does not guarantee inferential perfection or even consistency in problem-solving	fection or modeling regardless of (DeCarol		

→ Integration of implicit patterns learned from data

1. Uncertainty analysis

(3) Uncertainty due to the learning models (ML), data-driven model, connectionism

Gaps	Description	Case		
Approximation error Model architecture (how is it organized?)	Whether the ML model organization (e.g., the design of the model structure, depth of model) approximates a solution to accurately describe complex system behavior	CNN/RNN/Tree whether a model is designed to capture the autocorrelation		
Optimization error Learning rules (how does it learn?)	Choice of learning rules cause difficulty in finding or result in convergence to a suboptimal solution	Over-/underfitting issues		
Generalization error Objective functions (what does it learn?)	Whether training error minimization to approaching the defined indicator leads to a more accurate prediction for the solution	Mean squared error / cross-entropy		

→ Integration of explicit prior domain knowledge

2. Knowledge-based decomposition (What knowledge we can use?)

3. The Ladder of knowledge-integrated machine learning

Transfer information into machine-learnable information to achieve better

• Level 3 Representation

Typical methods: knowledge discovery, representation learning

• Level 2 - Extrapolation

Typical methods: transfer domain knowledge into modeling process

• Level 1 - *Interpolation*

Typical methods: data argumentation; feature engineering

3. The Ladder of knowledge-integrated machine learning Level 1 - *Interpolation: data argumentation*

Incorporate prior understanding into data:

better generalization; more efficient training; reduce overfitting; and compensate for sparse data

within observed range

3. The Ladder of knowledge-integrated machine learning Level 1 - *Interpolation: data argumentation*

• Chen, X., Guo, T., Kriegel, M., & Geyer, P. (2022). A hybrid-model forecasting framework for reducing the building energy performance gap. Advanced Engineering Informatics, 52, 101627.

3. The Ladder of knowledge-integrated machine learning Level 2 - *Extrapolation: Physical-informed*

Incorporate prior understanding into *model*:

better generalization, regularization; more efficient training; contextual understanding, informed predictions; outside the observed range

Shanghai, China

3. The Ladder of knowledge-integrated machine learning Level 2 - *Extrapolation: Physical-informed*

- Chen, X., Singh, M.M., & Geyer, P. (2022). Utilizing domain knowledge: robust machine learning for building energy performance prediction with small, inconsistent datasets. arXiv preprint arXiv:2302.10784.
- Chen, X., Singh, M.M. & Geyer, P. (2021). Component-based machine learning for predicting representative time-series of energy performance in building design. In 28th International Workshop on Intelligent Computing in Engineering, EG-ICE 2021. Berlin, Germany.

3. The Ladder of knowledge-integrated machine learning Level 3 - Representation: Knowledge discovery

Incorporate knowledge discovery mechanism into *model*:

reducing prior knowledge biases; encoding, representing, and transforming effective information concisely and selfcontinuously, reasoning

from domain data

3. The Ladder of knowledge-integrated machine learning Level 3 - Representation: Knowledge discovery

Height	Volume	Number	External	Ground	Window	u-Value	u-Value	u-Value
		of Floors	Wall	Floor	Area	(Wall)	(Ground	(Roof)
3.74219	8039.57	4	1051.36	537.09	357.575	0.23828	0.21797	0.20234
3.24219	5150.12	3	610.043	529.49	305.469	0.18828	0.16797	0.15234
3.82813	11041.8	4	1050.95	721.1	597.062	0.22031	0.15156	0.24531
3.46875	2524.66	3	467.647	242.61	195.751	0.23438	0.15313	0.21563
3.65625	7635.9	5	1018.12	417.69	476.369	0.20313	0.23438	0.19688
3	864	2	259.2	144	28.8	0.15	0.15	0.15
3.64063	6369.49	4	1039.34	437.39	200.297	0.22656	0.24531	0.15156
3.14063	2683.73	2	341.977	427.26	192.714	0.17656	0.19531	0.20156
3.96875	9691.53	4	1119.71	610.49	463.823	0.18438	0.20313	0.16563
3.15625	8205.33	3	871.051	866.57	243.894	0.15313	0.18438	0.24688
3.75	7315.31	3	803.25	650.25	344.25	0.225	0.175	0.175
3.80469	7637.68	4	938.138	501.86	425.843	0.20703	0.18672	0.19609
3.30469	1186.71	2	243.495	179.55	110.933	0.15703	0.23672	0.24609
3.89063	4455.16	3	691.053	381.7	302.516	0.20156	0.17031	0.22656
3.39063	6138.12	4	790.975	452.58	363.533	0.15156	0.22031	0.17656
3.04688	3689.52	3	503.973	403.64	253.556	0.17969	0.16719	0.19844
3.90625	2976.56	3	583.649	254	163.422	0.22813	0.15938	0.22188
3.5625	2896.1	3	533.64	270.98	171.735	0.15625	0.15625	0.15625

To correctly estimate the direct causal effect between *Window Area* and *Heating Load*,

- Ground Floor Area
- Floor Height
- Number of Floor
- *WWR*

should be controlled.

• Chen, X., Abualdenien, J., Singh, M. M., Borrmann, A., & Geyer, P. (2022). Introducing causal inference in the energy-efficient building design process. Energy and Buildings, 277, 112583. https://doi.org/10.1016/j.enbuild.2022.112583

Key takeaways

- A systematic review of performance gaps and uncertainties in problem formalization in the field of engineering.
- Knowledge decomposition paves the path toward knowledge-integrated machine learning a three-level ladder of integration paradigms.
- Reconciling first-principles simulation and data-driven methods contributes to effective engineering solutions.

Thank you! Questions?

Wechat

Personal page