

Introducing causal inference in the energy-efficient building design process

Xia Chen^{a d}, Jimmy Abualdenien^b, Manav Mahan Singh^c, André Borrmann^b, Philipp Geyer^{a d}

^a Technische Universität Berlin, Germany, ^b Technische Universität München, Germany, ^c Katholieke Universiteit Leuven, Belgium, ^d Leibniz University Hannover, Germany

Sustainable Building Systems Group, Prof. Dr.-Ing. Philipp Geyer xia.chen@iek.uni-hannover.de

Our general research objective: Machine assistance in engineering design support

- 3. Encoding causal modeling process of reasoning and answering "what-if" questions which are intuitively generated and commonly asked during the design process
 - 2. Exploring methodologies to identify, analysis, and present information not only relying on empiricism, data-driven methods, but also embedded with logicism representation of domain principles
 - 1. A machine assistance framework takes a shared set of representations to conduct multi-disciplinary evaluation and uncertainties analysis with incomplete inputs acceptance that aligned with the design process

Embedding logicism representations into the machine assistance > conduct reasoning analysis and answer "what-if" questions

"What-if" question in the building design domain

"What-if" questions are commonly encountered during the design process.

A series of actions to determine the most compatible adjustment with set objective(s)

-> Core of decision-making support during the design process

(images via: sleepny, wikimedia commons)

Design process paradigms: the separation of knowledge and experience

Idea

Knowledge

- Deterministic, universal
- Physical principles, the direction of causality.
- Highly extract information,
- Symbolism

Experience

- Statistic, individual (user-centered)
- Preferences, design variation
- Connectionism

Causal inferences logic - parametric independence: Correlation does not imply causation

Confounder (fork) : *Must be* controlled for in order to accurately estimate the effect

Collider: Must not be controlled for in order to accurately estimate the effect

model

independent and identically distributed (i.i.d.): the probability distribution of each value (parameter) should have no dependence on other values;

Potential confounding bias in data!

A glance of causal inference

Manually hardcoding domain rules embedded causal constraints

→ Expert systems: first-order method for causality encoding

A mathematical rigor approach to find and encode causality directly from data, no semantic grounding required

→ Causal model: second-order method for causality emergence

Research objectives

causal relations

causal effects

Asymmetry of independent changes in causality: i.e.,

- changes in P(cause) and changes in P(effect|cause) are independent
- changes in P(effect) and changes in P(cause|effect) are not independent

Directed Acyclic Graph (DAG)

- Structural Causal Model (SCM)
- Potential Outcome
 Framework

Role	Example	M	ethods (i.e.)
Causal skeleton → Knowledge	Cause-effect relationships		D-separation Back-door criteria
Causal effect → Experience	Variable manipulation/intervene	•	Average Treatment Effect (ATE) Conditional ATE

Causal inference in the building design process: a four-step framework

Design assistance dimension: process-oriented informative support

Case study: building early design phase scenario

Random building shapes

Sampled ranges

Unit	Min	Max
m^2	250	800
m	3	4
-	2	5
m^2	200	1800
m^2	30	850
	0.15	0.25
W/m ² K	0.4	0.6
	0.15	0.25
	0.15	0.25
	0.4	0.6
	0.7	1.0
-	0.3	0.6
m^3/m^2h	6	9
-	0.1	0.5
W/m^2	10	14
Person/m ²	16	24
	m - m² m² m² w/m² W/m²K - m³/m²h - W/m²	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

¹ Ground Floor Area for random shapes buildings

Generated data

		Number	External	Ground	Window	u-Value	u-Value	u-Value
Height	Volume	of Floors		Floor	Area	(Wall)	(Ground	(Roof)
3.74219	8039.57	4	1051.36	537.09	357.575	0.23828	0.21797	0.20234
3.24219	5150.12	3	610.043	529.49	305.469	0.18828	0.16797	0.15234
3.82813	11041.8	4	1050.95	721.1	597.062	0.22031	0.15156	0.24531
3.46875	2524.66	3	467.647	242.61	195.751	0.23438	0.15313	0.21563
3.65625	7635.9	5	1018.12	417.69	476.369	0.20313	0.23438	0.19688
3	864	2	259.2	144	28.8	0.15	0.15	0.15
3.64063	6369.49	4	1039.34	437.39	200.297	0.22656	0.24531	0.15156
3.14063	2683.73	2	341.977	427.26	192.714	0.17656	0.19531	0.20156
3.96875	9691.53	4	1119.71	610.49	463.823	0.18438	0.20313	0.16563
3.15625	8205.33	3	871.051	866.57	243.894	0.15313	0.18438	0.24688
3.75	7315.31	3	803.25	650.25	344.25	0.225	0.175	0.175
3.80469	7637.68	4	938.138	501.86	425.843	0.20703	0.18672	0.19609
3.30469	1186.71	2	243.495	179.55	110.933	0.15703	0.23672	0.24609
3.89063	4455.16	3	691.053	381.7	302.516	0.20156	0.17031	0.22656
3.39063	6138.12	4	790.975	452.58	363.533	0.15156	0.22031	0.17656
3.04688	3689.52	3	503.973	403.64	253.556	0.17969	0.16719	0.19844
3.90625	2976.56	3	583.649	254	163.422	0.22813	0.15938	0.22188
3.5625	2896.1	3	533.64	270.98	171.735	0.15625	0.15625	0.15625

- Singh MM, Singaravel S, Klein R, Geyer P. Quick energy prediction and comparison of options at the early design stage. Advanced Engineering Informatics 2020;46:101185.
- Geyer P, Singh MM, Chen X. Explainable AI for engineering design: A unified approach of systems engineering and component-based deep learning; 2021.

² Window-to-wall ratio (WWR) varies independently in each direction

Causal structure finding

Selected features	Knowledge encoding by simulation or real- world collection	Target dataset
~;.	world collection	

Height	Volume	Number	External	Ground	Window	u-Value	u-Value	u-Value
Height	Volume	of Floors	Wall	Floor	Area	(Wall)	(Ground	(Roof)
3.74219	8039.57	4	1051.36	537.09	357.575	0.23828	0.21797	0.20234
3.24219	5150.12	3	610.043	529.49	305.469	0.18828	0.16797	0.15234
3.82813	11041.8	4	1050.95	721.1	597.062	0.22031	0.15156	0.24531
3.46875	2524.66	3	467.647	242.61	195.751	0.23438	0.15313	0.21563
3.65625	7635.9	5	1018.12	417.69	476.369	0.20313	0.23438	0.19688
3	864	2	259.2	144	28.8	0.15	0.15	0.15
3.64063	6369.49	4	1039.34	437.39	200.297	0.22656	0.24531	0.15156
3.14063	2683.73	2	341.977	427.26	192.714	0.17656	0.19531	0.20156
3.96875	9691.53	4	1119.71	610.49	463.823	0.18438	0.20313	0.16563
3.15625	8205.33	3	871.051	866.57	243.894	0.15313	0.18438	0.24688
3.75	7315.31	3	803.25	650.25	344.25	0.225	0.175	0.175
3.80469	7637.68	4	938.138	501.86	425.843	0.20703	0.18672	0.19609
3.30469	1186.71	2	243.495	179.55	110.933	0.15703	0.23672	0.24609
3.89063	4455.16	3	691.053	381.7	302.516	0.20156	0.17031	0.22656
3.39063	6138.12	4	790.975	452.58	363.533	0.15156	0.22031	0.17656
3.04688	3689.52	3	503.973	403.64	253.556	0.17969	0.16719	0.19844
3.90625	2976.56	3	583.649	254	163.422	0.22813	0.15938	0.22188
3.5625	2896.1	3	533.64	270.98	171.735	0.15625	0.15625	0.15625

⁽a) Dataset

^{• [1]} Johannes Textor, Benito van der Zander, Mark K. Gilthorpe, Maciej Liskiewicz, George T.H. Ellison. Robust causal inference using directed acyclic graphs: the R package 'dagitty'. International Journal of Epidemiology 45(6):1887-1894, 2016.

"What-if" scenario i:

Direct causal effect from window area to heating load?

Suggestion to Scenario i: To correctly estimate the total causal effect from [Window Area] to [Heating Load], WWR, Ground Floor Area, Number of Floors and Height should be controlled (fixed) to eliminate biasing paths (red arrows).

"What-if" scenario ii:

Direct causal effect from building floor height to heating load?

Suggestion to Scenario ii: To correctly estimate the total causal effect from [Height] to [Heating Load], Window Area, External Wall Area, and Volume should not be adjusted (controlled) to avoid biasing paths.

Causal effects quantification: what if I had changed floor height from 3 meters to 3.2 meters?

Generated data with scenario condition

<u>Parameter</u>	Unit	Value
Ground Floor Area	m^2	300
Height	m	3 → 3.2
Number of Floors	-	3
External Wall Area	m^2	Unknown
u-Value (Wall)		Unknown
u-Value (Internal Wall)		Unknown
u-Value (Ground Floor)	W/m ² K	0.2
u-Value (Roof)	VV/III ⁻ IX	0.2
u-Value (Internal Floor)		Unknown
u-Value (Windows)		Unknown
g-Value (Windows)	-	Unknown
Permeability	m^3/m^2h	7.5
WWRs	-	0.3
Equipment Heat Gain	W/m^2	Unknown
Building Occupancy	Person/m ²	Unknown

$$\tau = \mathbb{E}[\text{Heating Load}|\text{Height} = 3.2\text{m}, X] - \mathbb{E}[\text{Heating Load}|\text{Height} = 3\text{m}, X]$$

- Window Area, External Wall Area, and Volume should not be adjusted
- If we calculate the CATE, the X becomes the set of [Building Equipment Heat Gain, Building Occupancy, Ground Floor Area=300, Number of Floors=3, WWRs=0.3, u Value Roof=0.2, u Value Ground Floor =0.2, Permeability=7.5]

Causal effects quantification: what if I had changed floor height from 3 meters to 3.2 meters?

Accuracy performance of three typical datadriven methods for predicting heating load

	MAPE	\mathbb{R}^2
LightGBM	6.972 %	0.924
RF	11.016 %	0.81
ANN	13.152 %	0.746

Changes of Heating Load, CATE	kWh/year
CATE based on simulations	218.52
CATE based on causal model	207.28
CATE based on pure ML model (LightGBM)	47.24

Output: If the treatment variable [Height] increases from 3 to 3.2 m based on Table 3 condition, causes an increase of 207.28 kWh/year in the direct expected value of the outcome [Heating_Load]

Key takeaways

- 1. Parametric dependency check is important.
- 2. An analogy between personal **experience** and physical **knowledge** provides a channel for integrating data-driven and knowledge-based methods through causal DAGs. This separation would achieve a fast cross-sectional examination and avoid conducting erroneous conclusions.
- 3. Causal model provides a **data-driven knowledge extraction method** for design process analysis with reduced computational difficulty; The causal model allows users to quickly check potential design alternatives in a higher dimension.
- 4. We clarify the **boundary of design assistance** based on DAGs. The growth of DAG with reduced uncertainties aligns with the nature of the design process.
- 5. A four-step framework is proposed to implement causal inference into the design domain with causal structure finding and causal relationship quantification.

Thank you! Questions?

xia.chen@iek.uni-hannover.de chenxiachan.github.io

Contact & More research insights