

Sustainability recommendation system for process-oriented building design alternatives under multi-objective scenarios

Xia Chen, Philipp Geyer Leibniz University Hannover, Germany

xia.chen@iek.uni-hannover.de

https://www.iek.uni-hannover.de/de/ngs

Introduction

"Evolutionary algorithms are a great tool for exploring the dark corners of design space."

- MIT Technology Review, 2005

Sustainable building design is a complex, multidimensional challenge: It requires **balancing**:

Challenge

- Current requirement for interpretable design space exploration across multidisciplinary domains.
- Existing tools are limited by dependence on designers' prior knowledge and computational bottlenecks.
- A need for a system that can provide rapid feedback, handle trade-offs, and adapt to various building engineering evaluations.

Sustainability recommendation system

Proposed Solution

- Chen, X., & Geyer, P. (2022). Machine assistance in energy-efficient building design: A predictive framework toward dynamic interaction with human decision-making under uncertainty. Applied Energy, 307, 118240.

Assistance in a case study

Energy Performance of Buildings Data: England and Wales, 19,725,379 samples with dwellings' detail across most UK regions and connects to the *domestic EPC (Energy performance certificate)*

Input features in categories (Potential design space):

- Geometry
- *Component material property*
- Energy system

Outputs:

- Energy Consumption in kWh/m²/year,
- Environmental Impact by CO_2 Emission equivalent in kg/m²/year.
- *Operational Cost* in £/m²/year.

Design Scenario: A flat building with detached built form between $150-250 \text{ m}^2$

Machine Assistance evaluation

Optimization and Clustering Analysis

- NSGA-II: iterative elitism process to determine Pareto-optimal solutions
- **DBSCAN**: unsupervised clustering on optimal inputs set to discover design patterns.

Results and Recommendations

• **General patterns:** relatively low floor height (around 2.3 m), normal glazed area (10%-20% based on RdSAP), and triple/double glazing windows.

Orange cluster

- 165 m², three-room-heated.
- Insulated timber frame walls.
- Main heating system: community scheme with main gas.
- Mechanical ventilation for extract.

- 210 m², 5-8 heated rooms.
- Fully triple-glazed windows.
- Insulated timber frame walls.
- Main heating system: combined heat and power community scheme.
- Natural ventilation.

Green cluster

- 210 m², three-room-heated.
- Insulated cavity or granite walls.
- Main heating system: combined heat and power community scheme.
- Nature ventilation.

Key takeaways

Sustainability Recommendation System: An innovative approach that supports sustainable building design by assisting designers in making informed decisions and optimizing design solutions.

- 1. Flexibility in Design Space Exploration by Surrogate Models
- 2. Rapid Feedback & Interaction with On-going Design Process
- 3. Effective Trade-off Analysis and Pattern Discovery as Recommendations.

Thank you! Questions?

Demo address:

https://designaid-for2363.streamlit.app/

